Cross Attention is a popular method for retrieving information from a set of context tokens for making predictions. At inference time, for each prediction, Cross Attention scans the full set of (N) tokens. In practice, however, often only a small subset of tokens are required for good performance. Methods such as Perceiver IO are cheap at inference as they distill the information to a smaller-sized set of latent tokens L<N on which cross attention is then applied, resulting in only (L) complexity. However, in practice, as the number of input tokens and the amount of information to distill increases, the number of latent tokens needed also increases significantly. In this work, we propose Tree Cross Attention (TCA) – a module based on Cross Attention that only retrieves information from a logarithmic (log(N)) number of tokens for performing inference. TCA organizes the data in a tree structure and performs a tree search at inference time to retrieve the relevant tokens for prediction. Leveraging TCA, we introduce ReTreever, a flexible architecture for token-efficient inference. We show empirically that Tree Cross Attention (TCA) performs comparable to Cross Attention across various classification and uncertainty regression tasks while being significantly more token-efficient. Furthermore, we compare ReTreever against Perceiver IO, showing significant gains while using the same number of tokens for inference.
Bibtex
@misc{feng2023tree,
title={Tree Cross Attention},
author={Leo Feng and Frederick Tung and Hossein Hajimirsadeghi and Yoshua Bengio and Mohamed Osama Ahmed},
year={2023},
eprint={2309.17388},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
Related Research
-
Detecting Mule Account Fraud with Federated Learning
Detecting Mule Account Fraud with Federated Learning
Research
-
Scalable Temporal Domain Generalization via Prompting
Scalable Temporal Domain Generalization via Prompting
S. Hosseini, M. Zhai, H. Hajimirsadeghi, and F. Tung. Workshop at International Conference on Machine Learning (ICML)
Publications
-
Accurate Parameter-Efficient Test-Time Adaptation for Time Series Forecasting
Accurate Parameter-Efficient Test-Time Adaptation for Time Series Forecasting
H. R. Medeiros, H. Sharifi, G. Oliveira, and S. Irandoust. Workshop at International Conference on Machine Learning (ICML)
Publications
Work With Us!
RBC Borealis is looking to hire for various roles across different teams. Visit our career page now and discover opportunities to join similar impactful projects!
Careers at RBC Borealis