t-Distributed Stochastic Neighbor Embedding (t-SNE) is one of the most widely used dimensionality reduction methods for data visualization, but it has a perplexity hyperparameter that requires manual selection. In practice, proper tuning of t-SNE perplexity requires users to understand the inner working of the method as well as to have hands-on experience. We propose a model selection objective for t-SNE perplexity that requires negligible extra computation beyond that of the t-SNE itself. We empirically validate that the perplexity settings found by our approach are consistent with preferences elicited from human experts across a number of datasets. The similarities of our approach to Bayesian information criteria (BIC) and minimum description length (MDL) are also analyzed.
Bibtex
@Conference{CaoAST,
Title = {Automatic Selection of t-SNE Perplexity},
Author = {Yanshuai Cao and Luyu Wang},
Year = {2017},
Abstract = {t-Distributed Stochastic Neighbor Embedding (t-SNE) is one of the most widely used dimensionality reduction methods for data visualization, but it has a perplexity hyperparameter that requires manual selection. In practice, proper tuning of t-SNE perplexity requires users to understand the inner working of the method as well as to have hands-on experience. We propose a model selection objective for t-SNE perplexity that requires negligible extra computation beyond that of the t-SNE itself. We empirically validate that the perplexity settings found by our approach are consistent with preferences elicited from human experts across a number of datasets. The similarities of our approach to Bayesian information criteria (BIC) and minimum description length (MDL) are also analyzed.},
Journal = {ICML Workshop on AutoML},
Url = {http://arxiv.org/abs/1708.03229}
}
Related Research
-
Our NeurIPS 2021 Reading List
Our NeurIPS 2021 Reading List
Y. Cao, K. Y. C. Lui, T. Durand, J. He, P. Xu, N. Mehrasa, A. Radovic, A. Lehrmann, R. Deng, A. Abdi, M. Schlegel, and S. Liu.
Computer Vision; Data Visualization; Graph Representation Learning; Learning And Generalization; Natural Language Processing; Optimization; Reinforcement Learning; Time series Modelling; Unsupervised Learning
Research
-
RBC Borealis to present two workshop papers at ICML 2017
RBC Borealis to present two workshop papers at ICML 2017
Research