How do large language models (LLMs) encode the state of the world, including the status of entities and their relations, as described by a text? While existing work directly probes for a complete state of the world, our research explores whether and how LLMs abstract this world state in their internal representations. We propose a new framework for probing for world representations through the lens of state abstraction theory from reinforcement learning, which emphasizes different levels of abstraction, distinguishing between general abstractions that facilitate predicting future states and goal-oriented abstractions that guide the subsequent actions to accomplish tasks. To instantiate this framework, we design a text-based planning task, where an LLM acts as an agent in an environment and interacts with objects in containers to achieve a specified goal state. Our experiments reveal that fine-tuning as well as advanced pre-training strengthens LLM-built representations’ tendency of maintaining goal-oriented abstractions during decoding, prioritizing task completion over recovery of the world’s state and dynamics.
Bibtex
@inproceedings{
li2024do,
title={Do {LLM}s Build World Representations? Probing Through the Lens of State Abstraction},
author={Zichao Li and Yanshuai Cao and Jackie CK Cheung},
booktitle={The Thirty-eighth Annual Conference on Neural Information Processing Systems},
year={2024},
url={https://openreview.net/forum?id=lzfzjYuWgY}
}
Related Research
-
Detecting Mule Account Fraud with Federated Learning
Detecting Mule Account Fraud with Federated Learning
Research
-
Scalable Temporal Domain Generalization via Prompting
Scalable Temporal Domain Generalization via Prompting
S. Hosseini, M. Zhai, H. Hajimirsadeghi, and F. Tung. Workshop at International Conference on Machine Learning (ICML)
Publications
-
Accurate Parameter-Efficient Test-Time Adaptation for Time Series Forecasting
Accurate Parameter-Efficient Test-Time Adaptation for Time Series Forecasting
H. R. Medeiros, H. Sharifi, G. Oliveira, and S. Irandoust. Workshop at International Conference on Machine Learning (ICML)
Publications