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1 Introduction

Learning to act in multiagent systems is distinctive from traditional single-agent learning, in that the optimal
strategy depends on others: an agent seeks to find the best response strategy and the other agents may adapt
their strategies in turn. This problem has been approached from several angles with different assumptions
from game theory to deep reinforcement learning (RL) [1, 4, 8, 7, 12]. However, many algorithms require
a long period of repeated interaction to learn appropriate responses, which may be unrealistic in many do-
mains. Also, agents can change their strategies, rendering the learned model irrelevant. One last difficulty
is that many domains are only partially observable [9], meaning that the agent cannot observe the envi-
ronment (and the opponents) all the time. Therefore, our goal is to tackle partially observable multiagent
scenarios by proposing a framework based on learning robust best responses (i.e., skills [11]) and Bayesian
inference for opponent detection [14]. In order to reduce long training periods, we propose to intelligently
reuse policies (skills) by quickly identifying the opponent we are playing with. To quickly adapt to non-
stationary learning opponents, we assume that their strategies can be clustered, which we can then best
respond against [3, 6, 13]. Then, our solution is a two step process of (1) generating robust skills (offline),
and (2) reusing those in an online manner.

2 Robust and reusable skills

Learning skills in multiagent environments Q-learning is a well-known algorithm for RL [17], however,
in practice it can take significant amounts of data to converge. In contrast, n-step methods or eligibility
traces usually show better performance [15], e.g., True Online Sarsa(λ) [16] was used as base algorithm
for learning the policies (best responses to opponent strategies). Since we aim for robust policies across
environments we take insights from single-agent learning by incorporating the skills concept. Skills’ core
idea (in single-agent RL) is that they retain the same semantics across tasks [11]. Therefore, we use features
that are relative to the learning agent, which makes them robust to changes in the environment.

We formalize the concept of skill in multiagent environments as follows, for agent i with respect to
opponent −i, a skill is a 3-tuple 〈Ioi,−i, π

o
i,−i, T o

i,−i〉, where Ioi,−i : (s|π−i) → {0, 1} is the initiation set
(where the skill can be used), the skill policy πoi,−i : (s, ai|π−i)→ [0, 1] defines how to act, and a termination
condition, T o

i,−i : (s|π−i) → {0, 1}, determines when to stop using the skill. Note that skill policies are
conditioned on the opponent since they represent a best response.

What is missing is to determine what opponent strategies should be considered. We define a hypothesized
opponent policy (HOP) set; for example, in poker, experts describe strategies based on few features [13]. In
general, agents need to interact with opponents that have not only one but a set of different behaviors. For
best performance, the agent needs to know how to respond with appropriate policies for each different oppo-
nent behavior while also continuously estimating possible changing opponent behaviour. In our experiments
we assume the opponent can use two possible strategies, being offensive or defensive.
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Figure 1: (Left) Pommerman board example, grey cells are passages, light brown cells are wood and dark brown cells
are rigid walls; (Center) partial views of an agent. (Right) Our learning agent is capable of identifying the opponent and
best responding in partially observable randomly generated boards, in contrast to a trained single-agent RL algorithm
which is best responding to the mixed behavior of the opponent. When facing against a defensive opponent, our agent
takes ≈ 100 timesteps to kill the opponent, with higher efficiency (≈ 90%) than the RL agent (≈ 25%), and when
facing an offensive opponent stays alive twice the time, relative to the RL agent (results of 10,000 games).

Reusing skills with opponent tracking Identifying, tracking and predicting changing behaviors is an
open challenge for autonomous agents [4, 5]. If the HOP set is known, together with their respective best
responses, then identifying the current opponent policy from the HOP set is all it takes to be optimal. More-
over, if the HOP is known, the agent can learn observation models ahead of interaction. These performance
models can then be used online to infer a belief over the HOP.

The high level idea of the online tracking algorithm is the following: (1) when the agent is in a strategic
interaction (SI), i.e., there is an opponent in view, the agent gets an observation σ (e.g., opponent action), (2)
which is used to update the belief, β, over the type of SI the agent is facing. For a set of previously solved
SI, H, and a new instance h?, the belief β is a probability distribution over H that measures to what extent
h? matches the known strategic interactions in their observation signals [10, 14]. (3) The belief is used to
obtain the most probable SI, argmaxβ, we assume the behavior of the opponent(s) is prescribed by π−i for
the current SI, and therefore the best response is readily available π = BR(π−i).

3 Experimental results
Setup The Pommerman environment [2] is played on an grid with up to four agents, each with six possible
actions: four movement actions, do nothing, or place a bomb. Each cell on the grid is a passage, a rigid wall
or wood. When an agent places a bomb, it will explode after 10 timesteps and its blast destroys wood and
any agents in its way. Maps are randomly generated on every episode. In the partially observable version
of the game, only a surrounding area of an agent is visible (see Figure 1). In our experiments we used two
agents, one learning agent and one opponent. The opponent has two fixed strategies to follow: an offensive
one (rule-based) that places bombs, and a defensive one that does not place bombs. Note that the best
response of the learning agent depends on the opponent strategy: staying alive for at least 300 timesteps
against the offensive strategy, and attacking (killing the opponent) against the defensive one. The board is
set to 8× 8 and is randomly shuffled for every game in our experiments. The opponent randomly chooses a
strategy on every game. Then, our learning agent needs to identify the opponent strategy and best respond
in a partially observable environment.

Results We compared our approach, Skills+Reuse, to a trained True Online Sarsa(λ) agent. Our prelimi-
nary results suggests that: (1) it is possible to generalize skills to multiagent environments; (2) while dealing
with unknown opponents Bayesian inference can be used in partially observable scenarios; and (3) opponent
behaviour identification can yield better results than a single-agent RL since it can best respond to specific
opponents, instead to a mixed behavior (see Figure 1, right).
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